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1 Overview

Lone Wolf Technologies, a software company specializing in solutions for real estate brokerages, is
interested in providing benchmarking metrics to their clients in the form of boxplots, generated using
data from those same clients. There is some concern regarding maintaining confidentiality at the level
of the individual brokerage while still providing accurate and meaningful benchmarking data. As such,
a project request was made to provide recommendations on how to measure and formalize the level of

privacy maintained when providing this benchmarking data to clients.

1.1 Scope

* The project focuses on data from brokerages in California (whereas the full data includes all of
the United States and Canada).

* The project implements the Laplace mechanism, a formal privacy method that is general enough
that the company can later adapt it on a larger scale, and simple enough that it can be implemented

without an advanced data science team after this initial project is complete.

* One of the fundamental concepts of differential privacy is that as the number of queries on the
data increases, the amount of privacy loss increases. For this project, it is assumed that the

number of queries will be limited to some small number (e.g. 5), mitigating this risk.

1.2 Results

There are four key outcomes for this project:

* We use a toy example to illustrate how non-privatized data can be backed out to obtain confi-
dential information when the results are exact, necessitating some masking mechanism (we use
a noise-generating mechanism called the Laplace mechanism). Furthermore, exact results can
be backed out even with added noise via averaging over multiple calls to the data, necessitating
limits to the number of calls which can be made. Calculating this limit is outside of the scope of

this project, as the use case doesn’t require multiple calls at this time.

* We implement the Laplace mechanism on the quantiles of the data to produce ’privatized’ box-
plot results. To do this, we estimate the sensitivity of the data (i.e., how much difference does
the presence / absence of a single row make?) using sampling from a gamma distribution that

approximates the distribution of the data.



* We show how the accuracy of the results changes as the privacy loss parameter € is varied and

offer general guidance on how to choose € in the future.
* Based on a choice of €, we illustrate how the results might vary from one iteration to the next.

Additionally, while not a key outcome of the paper, we implement a greedy clustering algorithm before
any differential privacy mechanism is applied. This gives us samples of the full dataset while also
paving a way for dynamically grouping data in the future, should the company decide to use clusters

more granular than state-wide.

2 Differential Privacy Summary

Difterential privacy (DP) is a broad category of tools and methods used to share aggregated data while
still ensuring a specified and measurable level of privacy at the individual level. This is an important
requirement when sharing many types of data, as individual records could be confidential or potentially

damaging to the individual if made public (e.g., private medical or financial records).

2.1 Privacy Budget and Sensitivity

A core tenet of differential privacy methods is the concept of a measurable, mathematically defined
privacy budget, commonly denoted as €. This is a user-specified input in the algorithm that represents
the level of privacy to be maintained when the aggregate results are supplied (i.e., the smaller the
value of €, the smaller the amount of maximum privacy loss). This € is implemented in different ways
for different algorithms. For simple DP mechanisms like noise-generating mechanisms, increasing e
means decreasing the amount of noise added to the aggregation function. The choice of € also affects
the total number of calls a user is permitted to make on the data to prevent them from simply averaging

the noise-added results to find the true result.

Another variable in the DP equation that affects the accuracy of output is the sensitivity. This concept
of sensitivity is distinct from the more commonly known sensitivity/specificity definitioins in binary
classification. For any given function (e.g., calculating the mean for a group), there is some level of
sensitivity, which is a representation of the amount of influence a single record or row has on the output
of the function (e.g., how much can the mean of some Group A change as a result of removing any

individual member of that group?).

Formally, we can say the sensitivity, A f, can be defined as:



Af =maz| f(Dy) — f(Ds)l;

where D, and D, are two datasets that differ in row and f the function applies to the data (e.g. the

median)

Thus, while € is a choice made by the provider of the aggregated results, the sensitivity is a quality

inherent to the type of aggregation being done.

For some simple cases, sensitivity can be calculated directly. However, for many cases a closed form is
not currently known. In such instances, an empirical estimate can be obtained using repeated sampling,
resulting in an estimate of €. Thus the distinction is made between e-DP and RDP (Random Differential
Privacy). (Rubinstein and Alda 2017b)

Typically, several resulting datasets are produced with varying levels of € and results are compared.
The final choice of € is often more a business intelligence decision than a mathematical one; being able

to make this choice is seen as a desirable characteristic of differential privacy methods.

There are many open source differential privacy libaries. All examples shown in this report used the
diffpriv R package which implements RDP (Rubinstein and Alda 2017a). For a comparison of several
libraries and why we chose diffpriv for this project, see Appendix A.

2.2 Mechanisms
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Figure 1: Noise Generating Mechanisms

The differential privacy method used for this project is the Laplace mechanism, which falls into the
category of noise-generating mechanisms (or additive noise mechanisms). Some specified level of
random noise generated from a Laplace distribution is added to the raw aggregated results, which makes
backing out the data more challenging to some measurable degree. A smaller privacy loss budget
(higher level of privacy ensured) requires more noise added to the resulting data as it is aggregated.

Calculating a function with a higher sensitivity also requires more noise.



The Laplace mechanism is the most commonly used noise-generating mechanism, but the closely re-
lated Gaussian mechanism is also commonly used. The Laplace mechanism, also known as the double
exponential mechanism, is more heavily peaked than the Gaussian mechanism, and also has heavier
tails (Figure 1). Sensitivity in the Laplace mechanism is measured by the /; norm while the Gaussian
mechanism measures sensitivity with the [, norm. This distinction matters when statistical inference
and prediction will be done after implementation of the differential privacy method. Since there is no

requirement for that with this project, the difference is negligible.

A
My e, f€) = f(z) + Lap(u = 0,b = 21

€

We use this same /; norm to fit the parameter €, by plotting the Mean Absolute Deviation around the

Median (MAD Median), as this metric is the MLE of the scale parameter of the Laplace distribution:

~ 1 X ~
MAD median = b = Z |z, — [
Additionally, we use a scale-free version, which we’ll call accuracy:

b
Accuracy =1 — —

This measure of accuracy is only meaningful locally, where |x, — 1| < i, otherwise accuracy becomes
a negative percentage. This restriction is acceptable, however, as we are only interested in values of €

that result in an accuracy relatively close to 100%.



2.3 Example

A trivial example will illustrate how differential privacy protects individual data from being extracted

from aggregated data. Consider the following set of sales volume data for five brokerages in Table 1.

Table 1: Example Data

Brokerage Sales Volume

A 23512
B 76543
C 33876
D 56899
E 71432

Assume brokerage B knows there are 5 brokerages that operate in the same region. Futher, brokerage
B believes brokerage E is their main competitor and wants to determine E’s exact sales volume. Even
if only mean sales volume queries are allowed, it would still be possible for B to determine E’s sales

volume with a pair of queries.

First, query the entire region which results in SV'1 = 52452.4. Next, query the region but exclude E
which results in SV2 = 47707.5. Finally, E’s sales volume is equal to 5% SV1—4x% SV2 = 71432.0.

However, if differential privacy is employed when calculating the mean, it is only possible to approxi-
mate E’s sales volume with the same two queries. Note that it is possible to average out the noise with
repeated queries; the privacy budget € limits the number of allowable repititions. See Figure 2 as an
example of the relationship between € and the number of cumulative repetitions required to average

out the added noise.
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Figure 2: Effect of Privacy Budget on Repeated Query Limit
3 Data

The data consists of deal records from brokerages in California over the last 18 months. Deals consist
of two sides (the buyer and the seller), of which the brokerage may represent only one side, or possibly

both (a so-called “double ender”). Multiple real estate agents may be on one side of a deal.

Of primary interest are the performance of (1) individual real estate agents, and (2) of offices as a whole.
As such, each row of data has performance metrics for a specific agent on a specific side of any given
deal. As a result, a deal will spread across multiple rows of data if there are multiple agents and/or

multiple sides on the deal for a given brokerage.

The specific metrics of interest are Sales Volume (SV) and Gross Commission Income (GCI), both of
which are used to measure agent performance. SV is a “credit” metric used to split up the sale price
of the deal among all of the agents on the deal. Similarly, GCI is a “credit” metric used to split up the
total commission on the deal among agents (note that this doesn’t necessarily reflect the commission

that individual agents actually receive; it is simply a way to assign credit).
» Total SV per office
» Total SV per agent

» Total GCI per office



* Total GCI per agent

For this project, we focus exclusively on grouping offices (and employees-within-office) by region (see
Appendix B for details on the grouping algorithm). Brokers are interested in seeing how their office
compares to other offices in their region, and how their agents compare to other agents in their region.
However, as stated above, the goal is to implement a general enough privacy algorithm that it can be
adapted to other grouping types (e.g, brokerage size, market type) in the future with simple feature

engineering.

One other important note is that there are many agents in the data who have $0 for Sales Volume, GClI,
or both. Including these agents in the analysis doesn’t work well, as it often results in the median being
equal to the minimum. However, it is common practice in the real estate industry to exclude these $0
agents and only view ‘productive’ agents. Thus, for the purposes of this study, we excluded the $0

agents.

4 Results

In this section, we focus solely on Sales Volume. Similar results for GCI are provided in Appendix C.
We use two clusters of offices, one small (5 offices, 112 agents) and one large (21 offices, 374 agents),

to highlight how results vary as n changes.

4.1 Evaluating MAD and Accuracy as Epsilon Varies

The client seeks to display boxplots of privatized data. Thus, we use the Laplace mechanism on five
quantiles (minimum, 25%, median, 75%, maximum) to produce boxplots. Implementation of such an
algorithm requires tuning in several areas. We add a constraint that the resulting quantile values be
monotonically non-decreasing. We tune the sensitivity using Random Differential Privacy based on
samples from a gamma(a = 3,0 = mean(X)>/*), where the number of samples corresponds to the

number of records in the dataset. The gamma distribution was chosen for several reasons:

» The sales data is strictly positive and heavy-right-tailed, which the gamma distribution easily

approximates.

* Choosing a shape parameter of 3 yields a moderately 'non-informative’ distribution. It allows

for a non-zero maximum while still being relatively right-skewed.

* Choosing the scale parameter equal to the mean of the data to the % power accomodates the fact

that sensitivity is scale-variant.



Since our model is not an exact e-DP model, but rather an RDP model, we simply require a random-
ness generator that generally approximates the sensitivity of the dataset; it is not expected to be exact.
Further tuning can be addressed by modifying the privacy loss parameter €. This can be done using
charts which show how Mean Absolute Deviation around the median (MAD Median) varies with the

choice of € (Figure 3).
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Figure 3: Plotting Mean Absolute Deviation around the Median as a function of Epsilon

Calculating MAD Median and Accuracy for these four groups highlights several important results.

* For a given value of ¢, the absolute amount of noise added varies with the estimated sensitivity

of the data.

* For a given value of ¢, the relative amount of noise added varies with the estimated sensitivity

as well as with the overall magnitude.

* A given value of € may not yield sufficiently accurate results in some cases, and may yield overly
accurate results in others, where the desired level of accuracy is more a abusiness intelligence

question than a statistical question.

For the office-aggregated results of the smaller cluster with only (n = 5 offices, there is much more



privacy loss for a similar amount of accuracy (or conversly much lower accuracy for a similar amount
of privacy loss). Table 2 summarizes the results for a vertical slice at ¢ = 0.5. Notice the significant
loss in accuracy for the office grouping of the small cluster. This is due to the data having much higher

sensitivity as a result of the much smaller n.

Given the current scope restriction that the end user will not be able to query the data repeatedly, a
larger € could be chosen that gives an accuracy for all four of these groups. If the query limit changes,

a more formal calculation of the privacy loss for the full continental data set is recommended.

Table 2: MAD Median and Accuracy at Epsilon=0.5

MAD  accuracy cluster type

1965.606 0.9973483 Large Employee

11992.099 0.9885227 Small Employee
966371.955 0.9503936 Large Office
4405143.454 0.8200538 Small  Office

Similarly, note how much e varies for an accuracy of 95% in Table 3.

Table 3: MAD Median and Epsilon at Accuracy=0.95

epsilon MAD cluster type

0.0305090 31956.91 Large Employee
0.1230160 48353.67 Small Employee
0.4960161 96637195 Large Office
2.0000000 1092511.07 Small Office




4.2 Boxplots and the Variation Between Iterations

Based on the above results, we chose € = 0.5 for all of subsequent boxplots. The office results will
be less accurate, on average, than the employee results. Similarly, the small cluster results will be less
accurate, on average, than the large cluster results. This makes sense, as n is smaller for the office
groupings than for the employee groupings, and smaller for the small cluster than for the large cluster.

These plots show the sort of variation we would expect to see.

4.2.1 Large Cluster, Grouped by Employee

Table 4: DP Iterations on Sales Volume by Employee, Large Cluster

iteration min ql median q3 max

1 41059.32 374604.3 740684.5 1572674 43691915
2 72477.52 275854.5 716368.4 1539029 43664087
3 140061.00 361119.9 816863.1 1469412 43688770
4 61869.29 360669.3 719497.5 1571726 43703662
5 56938.88 336891.7 742378.2 1549709 43748699
True 40000.00 375000.0 741250.0 1575500 43700000

DP lIterations of Sales Volume by Employee within Office
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Figure 4: DP Iterations on Sales Volume by Employee, Large Cluster
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4.2.2 Small Cluster, Grouped by Employee

Sales Volume

Table 5: DP Iterations on Sales Volume by Employee, Small Cluster

iteration

iteration min ql median q3 max
1 143585.0 307160.4 1097811.4 2006706 12270177
2 229196.8 409036.5 1277023.2 1991945 12287267
3 253504.1 332712.6 1442997.1 2757911 13451326
4 184435.4 259795.7 10810959 2675549 12229188
5 454012.1 720219.7 935246.3 1610412 12164343
True 41400.0 460500.0 1044850.0 2008425 12269403
DP lIterations of Sales Volume by Employee within Office
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Figure 5: DP Iterations on Sales Volume by Employee, Small Cluster
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4.2.3 Large Cluster, Grouped by Office

Sales Volume

Table 6: DP Iterations on Sales Volume by Office, Large Cluster

iteration

iteration min ql median q3 max
1 2611728 10168737 14529550 28929906 75142305
2 5201715 5518318 20020744 29325564 80544019
3 3535887 6082981 25262923 31150163 66116131
4 4311825 4828337 18748025 25832476 72092156
5 3141042 4808126 6334092 29847446 66851617
True 1398000 5263087 19480791 29973000 74218892

DP lIterations of Sales Volume by Office
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Figure 6: DP Iterations on Sales Volume by Office, Large Cluster
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4.2.4 Small Cluster, Grouped by Office

Table 7: DP Iterations on Sales Volume by Office, Small Cluster

iteration min ql median q3 max
1 2668339 7288111 26957530 31605211 102934076
2 4443379 8119854 23727025 71945809 117394159
3 9831516 15103771 27306614 65945235 104637445
4 1559647 9174315 27212794 58241024 100809986
5 4620231 11054249 22618444 59850447 91302232

True 540000 4690000 24480331 58409943 105538078
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Figure 7: DP Iterations on Sales Volume by Office, Small Cluster by Office

5 Conclusion

In this paper, we implemented a differential privacy mechanism on the quantiles of Sales Volume and
GCI data from the real estate market. The results still approximate the true values in the data while
also generating a controllable amount of noise. This noise fluctuates as expected with n, with the

overall sensitivity of the data, and with the user-controlled privacy loss parameter €. Additionally,

13



we demonstrated how this DP mechanism helps to preserve privacy and offered guidance on how to

balance privacy with accuracy in the output.

5.1 Next Steps

Several interesting and important topics of exploration remain for further study.

* Currently, our model uses sensitivity sampling on a gamma distribution with a scale parameter
proportional the median. A recommended addition to this approach might be to also adjust the
shape parameter such that the variance of the sampling distribution more closely approximatates

the variance of the data.

* Another approach to estimating sensitivity would be to sample from a function or functions of
the data itself. While more computationally intensive, this may also yield a more accurate estima-
tion of the data’s sensitivity. For example, sampling separately for the sensitivity of minimum,
median and maximum would allow for more flexibility in the model, as each quantile could have

a separate sensitivity estimate, and a separate resulting amount of noise added.

+ The Differential Privacy libraries produced by Google and IBM are more robust and have better
documentation. A larger scale implementation of DP on this data might benefit from the features

that come with those libraries.

* The problem of the “overdispersed” data when $0 agents are included remains unsolved; when
the $0 agents are not filtered out of the data, then the median of the data often equals the mini-
mum, leading to poor DP results. A simple enough solution would be to simply display a 0 in
the output when there is a 0 present in the original data, and only calculate DP estimates for the
non-zero values. This makes sense, since 0 is the lower bound; if the minimum and the 25th
percentile are both 0, then under certain assumptions, there would be no privacy loss by simply
displaying a 0 for the minimum instead of adding noise via a DP mechanism. Assumptions might

include some minimum number of non-zero offices or agents in the data set to ensure privacy.

14



A Open Source Differential Privacy Libraries

Below is a summary of the open source differential privacy libraries that we evaluated as part of this

study.
Source Algorithms Supported Languages
Google Count C++
https://github.com/google/differential-privacy Sum Java

Mean
Variance/Std. Deviation
Order Statistics
Gaussian Mechanism
Laplacian Mechanism
Uber (deprecated) SQL Queries Scala
https://github.com/uber-archive/sql-

differential-privacy

IBM Histograms Python

https://github.com/IBM/differential-privacy- Gaussian Naive Bayes,
library
Logistic Regression
Linear Regression
K-means
PCA
Standard Scaler
Laplacian Mechanism
Exponential Mechanism
Binary Mechanism
Staircase Mechnaism
Uniform Mechanism
Wishart Mechanism

diffpriv Laplacian Mechanism R
https://cran.r-project.org/web/packages/ Exponential Mechanism
diffpriv/index.html
Gaussian Mechanism
OpenDP (under development) TBD TBD
https://projects.iq.harvard.edu/opendp

15
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For more context, we focus on three libraries we actively tried and some of our thoughts regarding

them,

* IBM's Differential Privacy Library (IBM DP)
— Updated as recently as July 2020.
— Python Support Only
— A multitude of Python notebooks demonstrating various features under the lens of peda-
£ogy.
* OpenDP
— Extremely new project that is being actively developed.
— Core system written in Rust with R, Python, and Rust bindings.
— Attempted to use R bindings, which involved compiling the core Rust system from scratch,
which wasn’t able to be done successfully.
e diffpriv
— Not actively developed, with last commit from July 2017.
R Support Only.

Relatively sparse examples in R vignette as well as less of a pedagogical bent.

Could be arguably seen as a proof of concept and less “for production” relative to the

aforementioned libraries.

On a high level,

* IBM DP, OpenDP are both more “for production” ready as well as have a multitude of examples
to help drive development.
* diffpriv is very barebones, has minimal included examples, and has more of a “proof-of-

concept” flavor.

We actively preferred IBM DP, but due to making the decision to use R, we ruled out that library. We
attempted to compile OpenDP and use its R bindings, but we encountered insurmountable compilation
errors. Ultimately, we chose diffpriv as the last remaining option, albeit we feel comfortable in its

“optimized for correctness” approach even at the expense of pedagogy.
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B Grouping Algorithm

One reasonable grouping criteria is distance given the size and diversity of communities in California.
For example, real estate data in highly urban areas such as Los Angelels or San Francisco differs
significantly from data in more rural areas such as Bakersfield. We implemented a simple greedy
algorithm that groups offices based on the minimum geodetic distance between zip codes. We choose
the minimum cluster size as seven offices, but this is a parameter which can be easily changed. An R

implementation of the algorithm is shown below.

Note that we implemented this as a way to simulate different “states” in our data, since we only used
data from California. However, this could be implemented as a way of presenting more granular geo-

graphical benchmarking metrics to clients while still maintaing an appropriate minimum cluster size.

library(geosphere)
library(sp)

# Number of offices and agents per zip code
df clean loc <- df clean %>%
group_by(office_postal code, lat, lng) %>%
summarise(office count = n_distinct(office),
agent_count = n_distinct(employee)) %>%
mutate(cluster = NA)

# Matriz to hold distances between offices
dist <- SpatialPointsDataFrame(matrix(c(df_clean_loc$lng,df clean_loc$lat),
ncol=2),
data.frame(ID=seq(l:nrow(df clean loc))),
proj4string=CRS("+proj=longlat
+ellps=WGS84
+datum=WGS84"))

nzips <- length(df_clean_ loc$office_postal code)
mdist <- distm(dist)

diag(mdist) <- NA

# Greedy clustering based on distance

min_cluster_size = 7

17



# Find zip codes that already meet min_cluster_size
idx <- which(df clean loc$office count >= min_cluster_size)

df clean_loc$cluster[idx] <- seq(l, length(idx))

mdist[idx,] <- NA
#mdist[,idx] <- NA

while (any(is.na(df_clean_loc$cluster)))
{

min dist <- min(mdist, na.rm=TRUE)
idx <- which(mdist == min_dist)
ridx <- (idx[1] %/% nzips) + 1
cidx <- idx[1] %% nzips
if (cidx == 0)
{

ridx <- ridx - 1

cidx <- nzips
}
mdist[ridx, cidx] <- NA
mdist[cidx, ridx] <- NA

if (is.na(df _clean loc$cluster[ridx]) & is.na(df_clean_ loc$cluster[cidx]))
{

# New Cluster

cluster_id <- max(df clean loc$cluster, na.rm=TRUE) + 1

df clean loc$cluster[ridx] <- cluster_id

df clean_loc$cluster[cidx] <- cluster_id

}
else if (is.na(df clean loc$cluster[ridx]))
{
# Merge existing cluster(s)
cluster_id <- df clean loc$cluster[cidx]
df clean loc$cluster[ridx] <- cluster_id
}

else if (is.na(df_clean_loc$cluster[cidx]))

18



# Merge ezisting cluster(s)
cluster_id <- df clean loc$cluster [ridx]
df clean loc$cluster[cidx] <- cluster_id
}
else
{
row_cluster <- df clean loc$cluster[ridx]
col cluster <- df clean loc$cluster[cidx]

cluster_ id <- max(c(row_cluster, col cluster), na.rm=TRUE)

df clean loc$cluster[df clean loc$cluster == row_cluster] <- cluster_id

df clean loc$cluster[df clean loc$cluster == col cluster] <- cluster_id

cluster_size <- sum(df_clean loc$office _count[df clean loc$cluster
== cluster_id], na.rm=TRUE)
if (cluster_size >= min_cluster_size)
{
cluster rows <- which(df clean loc$cluster == cluster_ id)

mdist [cluster rows,] <- NA

The result was a total of 48 clusters; the smallest clusters contain 7 offices each and the largest cluster

contains 38 offices. A map of the offices color coded by cluster is shown below.
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C Results for GCI

Results were similar for GCI calculations, as seen in the plots below. One notable difference is that a
different (larger) e would likely be chosen to obtain the desired level of accuracy; likely closer to 1.0
or 1.5.

Mean Absolute Deviation around the Median vs. Epsilon
1le+07 -

MAD median
=
(0]
®
o
w

Accuracy vs. Epsilon
100% -

75% -

50% -

Accuracy

25% -
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cluster Large —— Small type — Employee ---- Office

Figure 8: Plotting Mean Absolute Deviation around the Median as a function of Epsilon for GCI

Table 8: MAD Median and Accuracy at Epsilon=1.25 for GCI

MAD accuracy cluster type

121.0950 0.9933264 Large Employee

320.3386 0.9854114 Small Employee
24316.5490 0.9485192 Large Office
106445.6283  0.8099700 Small  Office

Table 9: MAD Median and Epsilon at Accuracy=0.9 for GCI

epsilon MAD cluster type

0.0817756  1805.092 Large Employee
2.2220123 58395.344 Small Office
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