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1 Task Description

The MAADCAP task will crowd-source input from subject matter experts
(SMEs) on the level of analytics required to detect specific cyber techniques
in different kinds of data. The objective is to identify those areas where
there is consensus across SMEs vs those areas where there is not consensus
and thus suitable for further investment in additional research. Note that
consensus is different from consistency, and the following definitions apply to
the discussion in this paper:

» Consensus - Raters have exact agreement on how to apply various levels
of the scoring rubric to the observed data.

— Example statistics are Cohen’s Kappa and Tastle’s Consensus.

» Consistency - Raters do not have a common understanding of the rating
scale, but are consistent in application of his/her own defintion of the
rating scale.

— Example statistics are Pearson’s correlation and Spearman’s corre-
lation.

In other words, if consensus among the raters is high then one can infer the
scoring rubric is an appropriate method for identifying areas in the defensive
cyber space that require advanced analytics.



Table 1: Random Ratings

Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Rater 1 4 3 1 5 5 2 2 5 5 1
Rater 2 4 4 4 2 2 5 4 1 1 3
Rater 3 4 5 3 5 1 1 1 3 2 5
Rater 4 5 1 2 3 1 3 3 4 2 1
Rater 5 2 3 4 1 2 4 2 3 5 4

2 Challenges

Non-response (both unit and item) occurred during MAADCAP Phase L.
Given the large number of items (~3000) to be scored, not all SMEs will be
asked to score all items during Phase II. Therefore, there will intentionally
be items with missing data in addition to likely unintentional non-response.
Thus, the statistics chosen must be able to handle missing data.

3 Recommended Statistics for Phase 11

3.1 Krippendorf’s alpha

Krippendorf’s alpha (A. Hayes 2007) was initially developed for content
analysis applications. Content analysis depends on the judgment of human
observers, and so there is a need to measure reliability among the human
observers. High reliability implies that the data from the human observers
are exchangeable with the data from another set of observers (as opposed to
being largely the result of individual idiosyncracies). Krippendorf’s alpha has
several advantages including that it can handle varying numbers of observers,
different sample sizes and the presence or absence of missing data.

For Phase II, before assessing consensus on invidual items, Krippendorf’s
alpha should first be applied to the entire data set to determine if the data
differ significantly from random data (K’s e = 0) or if there is systematic
disagreement (K’s oo < 0).

Table 1 illustrates why first assessing overall agreement is important. The
table contains randomly generated scores. Question 1 appears to have a high



degree of consensus/agreement among the raters, but that is misleading since
we know this data was randomly generated. Krippendorf’s alpha = —0.14 for
Table 1 which indicates the data does not differ significantly from random
data, and therefore further analysis of individual items is not recommended.

Similarly, if Krippendorf’s alpha showed systematic disagreement across the
data, that indicates an issue which needs to be resolved (e.g., inconsistent
training on the scoring rubric) before attempting to do further analysis.

3.2 Tastle’s Agreement

Assuming Krippendorf’s alpha indicates the data in aggregate is not nearly
random and there is not significant disagreement, the next step is to assess
consensus on individual items. Phase I used Tastle’s Consensus measure
(Tastle 2009), but it has some known issues; namely that it is not monotonic
with respect to the majority and is undefined at some edge cases (G. Beliakov
2014). A recommended alternative to Tastle’s Consensus about the mean is
Tastle’s Agreement about the median since it does not have the same issues.

Tastle’s Agreement about 7 is defined as follows:
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However, the range for Equation 1 is not [0,1] when 7 = median. A scaled
Agreement measure may be desirable for MAADCAP applications.
3.2.1 Scaled Agreement With Median

When there are an even number of scores which are evenly distributed, then
the median (7) is halfway between X,,;, and X,,..):
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When there are and odd number of scores with n scores at one end of the
scale, and n + 1 scores at the other end of the scale, then median (7) is now
the category with n 4 1 scores. In the example below, the n 4 1 scores are at
Xinae however we would get the same result for n + 1 scores at X,
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Agreement is maximum when all scores are in one category (7 = X, =
median):
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Therefore the range of Agreement around the median is [0.5, 1]. Equation 1
when 7=median can be scaled to give a value between [0,1]. Since this is just
a linear transformation of the equation, it will not affect the other properties
of the equation (e.g. monotonicity with respect to majority).

Agr(X, Timedian) — 0.5
1-0.5
= 2AgT’(X, Tmedian) -1

Agrscaled(Xa 7-medz'an) =

3.2.2 Agreement With Other Values

Agreement can be calculated around other values of 7, such as the minimum
score, maximum score or a specific category.

When 7 = min, Agreement is a minimum when 1 score is in the minimum
category and the remaining n — 1 scores are in the maximum category.
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Maximum Agreement occurs when all scores are in the same category. There-
fore the range of Agreement with the minimum is [0, 1] and no transformation
is needed. Similar results are obtained if Agreement is calculated with the
maximum.

3.3 Confidence Intervals

The point estimates of Krippendorf’s alpha and Tastle’s Agreement give part
of the picture. An example is easily illustrated with Tastle’s Agreement with



7 = median. In the table below, the proportion of scores in each category
is the same, but the total number of raters differs. In all three cases, the
Agreement score is 0.72 despite the fact that the total number of raters varies
by factors of 10 to 100 between the three cases.

1 2 3 4 5
small 1 0 10 3
large 10 0 10 0 30
huge 100 0 100 O 300

What is missing is some measure of uncertainty about the estimate of the
Agreement score. As the number of raters increases, the uncertainty around
the point estimate for the true population value of Agreement decreases.
Calculating a confidence interval for the point estimate provides this additional
information. The distribution of the Agreement statistic is unknown, so
percentile and bias corrected bootstrap estimates of the confidence interval
are calculated below (Efron and Narasimhan 2018). The bias correction has
a significant effect for the small data set, and it becomes less significant as
the sample size increases (i.e. the sampling distribution approaches a normal
distribution).

Percentile CI BC CI
2.5%  98% lower upper

small  0.60 1.00  0.60  0.83
large  0.64 0.82 063 0.81
huge  0.68 0.75 0.68  0.75

3.4 Coefficient of Variation for Ordinal Categories

Another alternative to Tastle’s Consensus is the Coefficient of Ordinal Vari-
ation (COV) (Kvalseth 1995a). This statistic is a measure of dispersion;
COV =1 when scores are evenly distributed between the two extreme cate-
gories and COV = 0 when all scores are in a single category. One strength of
COYV is that it is based on the cumulative probabilities of scores and does
not depend on assigning numerical values to the categories which is arguably
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arbitrary (Kvalseth 1995b). Note that if we assign category values of 1,2, ...k
as is common practice, then the scaled version of Tastle’s Agreement about
the median and 1 — COV give similar results.

3.5 Rater Correlation

Since Phase I will assess Agreement with the minimum score (i.e., Tastle’s
Agreement where 7 = minimum), it may be useful to first check Spearman’s
Correlation or Kendall’s 7 to compare the trend between an individual SME
and the larger group which scored the same group of questions. Similar to
using Krippendorf’s « to identify systematic disagreement across the entire set
of raters, Spearman’s Correlation or Kendall’s 7 could be used to identify if
one SME is systematically scoring differently from the rest of the group. That
should be investigated further before proceeding with an Agreement measure
about the minimum. For example, the individual may not understand the
scoring rubric. Conversely, the individual may have unique experiences and
insights which should not be discarded.

3.6 Rater Use of Scores

A simple bar chart as illustrated below can provide insight at a glance into how
raters are using the scores. For example, in the chart below it is immediately
apparent that a score of 0 is the predominant score used by all three raters.
It is also easy to see that only one rater made full use of all scoring levels,
and another rater scored only a subset of the questions. A simple graphic
such as the one below may be easier for a user to interpret than a statistic in
some cases.
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4 Statistics for Nominal Data

Future versions of the tool may be applied to problems where the SMEs aren’t
using an ordinal rating scale, but rather are using nominal categories. In that
case, Krippendorf’s alpha is still applicable. However, Tastle’s Agreement
is only valid for ordinal/Likert scales, and thus an alternative measure of
consensus is needed.

4.1 Mode and Mean Difference

Unlike ordinal data, the categories for nominal data are labels (e.g., eye color
is blue, green, brown) and there is no scale or distance between the labels.
The median does not exist for nominal data; instead, the mode should be
reported. Note that unlike the median, the mode may not be unique.

Tastle’s Agreement should not be used to assess the dispersion or variability
in the scores since there is no distance measure. Instead, the mean difference
(Wilcox 1973) can be used:



Table 2: Example - Nominal Data

Q1 Q2 Q3
Rater1 A B C
Rater 2 B B C
Rater 3 C B E
Rater4 D B NA
Rater 5 E B E
MDA —1— it b I fi = 1]

N(E —1)

where f; = frequency of the ith category, N = number of cases and K =
number of categories. The range for MDA is [0,1] where 0 occures when all
cases fall in one category, and 1 occurs if and only if an identical number of
cases occur in all categories.

mda mode

Ql‘l 1 C("A", HBII, HCH) llDH’ llEll)
Q21 0 B
Q3.1 025 <("C",'E")

Note that MDA is a measure of difference, not “agreement". Therefore, in
the user interface it may be preferable to report 1 — M DA since that scale is
consistent with Tastle’s Agreement.

5 Statistics Considered, but Not Recom-
mended

The following section summarizes other statistics considered and the reasons
they are not recommended at this time for this application.



Metric

Purpose

Limitations

ICC (McGraw
and Wong
1996)

Cohen’s
weighted k

Fleiss’ kappa

McNemar’s
Test

Stuart-
Maxwell

Test
Cronbach’s «

Ten variations to handle
different study designs (e.g.,
raters for each subject
selected at random),
measurement of interest
(single rating or mean of
several ratings) and type
(agreement or consistency).

Measures observed
agreement compared to
agreement due to chance
between two raters.

Measures observed
agreement compared to
agreement due to chance for
more than two raters.

Test marginal homogeneity
between two raters for two
categories.

Test marginal homogeneity
between two raters for all
categories simultaneously.
A measure of scale
reliability (internal
consistency), assumes
questions are measuring one
latent variable or dimension.

Strongly influenced by
variance of the
sample/population so may
not be appropriate to
compare different
populations; uses list-wise
deletion for missing
elements so not suitable
for fully-crossed designs
with many missing
elements; usual ANOVA
assumptions apply
(Normal distribution and
homogeneity of variances).
Value depends strongly on
marginal distributions and
prevalance of occurrence.
Hard to interpret and
compare.

Value depends strongly on
prevalence of occurrence.
Biased when there is
missing data (A. Zapf
2016).

No generalization for
multiple raters.

No generalization for
multiple raters.

Not robust to missing
data; sensitive to very
large or very small number
of test items.
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6 Conclusion

For MAADCAP Phase II, we recommend using Krippendorf’s alpha and
Tastle’s Agreement to analyze and prioritize the scoring data. Although there
are some known issues with Tastle’s Consensus, there is value in also using it
for Phase II so that some comparisons can be made to the Phase I results.
The guidelines for using these statistics are as follows:

1. First, confirm with Krippendorf’s alpha that the rater scores in aggregate
are not nearly random (i.e., the confidence interval includes zero) nor
show systematic disagreement (i.e., the confidence interval includes
negative numbers).

2. If the first condition is satistified, then the next step is to assess indi-
vidual items. Using either the Agreement or Consensus statistic, each
item can be placed into one of the following categories:

a. Insufficient Data: Items do not have enough scores to draw con-
clusions (i.e., a confidence interval is wide or cannot be calculated
at all); these items should be a high priority for additional SME
scoring.

b. Disagreement: Items with sufficient data to conclude there is
systematic disagreement and further investigation is required (i.e.,
low Agreement/Consensus with a small confidence interval); these
are items with significant differences in scores which may be difficult
to reconcile.

c. Mediation Candidate: Items with sufficient data to conclude
that consensus building may be useful (i.e., moderate Agree-
ment/Consensus with a small confidence interval).

d. Agreement: Items with sufficient data to conclude there is sys-
tematic agreement (i.e., high Agreement/Consensus with a small
confidence interval) and further investigation is not necessary; these
items should be a low priority for additional SME scoring.
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